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- ABSTRACT . . o j

k new penalty function is assoc1ated w1th an inequality constrained
nonlinear programming problem via its dual. This penalty function is
globally differentiable if the functions defining the original problem are
twice globally differentiable. In addition, the penalty parameter remains
finite. This approach reduces the original prob]em to a simple problem
of maximizing a globa11y differentiable function on the product space of
a Euclidean space and the nonnegative orthant of another Euciidean space.
Many efficient algorithms exist for solving this problem. For the case
of quadratic programming, the penaity function problem can be solved

effectively by successive overrelaxation (SOR) methods which can handle

huge problems while preserving sparsity features.f«
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SIGNIFICANCE AND EXPLANATION

The problem of minimizing a function of several variables

e

subject to inequality constraints is reduced to the problem of
maximizing a smooth function subject to nonnegativity constraints.

{ The latter problem can be easily solved by many known efficient

methods. Very large quadratic problems can be solved by using
successive over~relaxation methods which will preserve any sparsity

the original problem may have.
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A DUAL DIFFERENTIABLE EXACT PENALTY FUNCTION

S. -P. Han and 0, L. Mangasarian

a

1. Introduction

It 1s well known that exterior penalty functions [6,13] in mathe-
matical programming suffer from one of two difficulties. Either the
Hessian of the penalty function becomes ill-conditioned as the penalty
parameter approaches infinity [6,20], or the penalty function is
nondifferentiable [13]. There have been, however, attempts at obtaining
penalty functions which are both differentiable and for which the
penalty parameter remains finite [8,3,4,1]. We present here a different
and an extremely simple penalty function which, by taking advantage of
the structure of the dual problem, results in a penalty function which
is differentiable and for which the penalty parameter remains finite.
The key idea behind the present approach is extremely simple and is best
illustrated by the following equality-constrained minimization problem

minimize f(x) subject to h(x) = 0
XeRN

where f and h are differentiable functions from the n-dimensional
real Euclidean space R" into R and Rk respectively. The classical
exterior penalty problem for this problem is

minimize £(x) + $|lh(x)]|?
xeRM

where o is a positive penalty parameter and ||+|| denotes the 2-norm.

At stationary points of the penalty problem we have

vf(x) + avh(x)Th(x) = 0

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041,
This material is based upon work supported by the National Science
Foundation under Grants No. MCS-790166 and ENG-7903881, :
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where Vf(x) 1is the nx1 gradient of f, Vh(x) 1s the kxn Jacobian
of h and the superscript T denotes the transpose. In order for this

condition to approach the stationarity conditions for the minimization

problem, which are
vf(x) + vh(x)Tu = 0, h(x) = 0

where u 1is an kx1 vector of Lagrange multipliers, the quantity
ah(x) must approach u. Since h(x) = 0, it turns out that in_general
a must approach «. There are exceptions. For example if u =0

then o need not approach «. This is an exceptional case which

does not hold in general for the original minimization problem.

However, if we consider the Wolfe dual [22,15] to an inequality

constrained minimization problem, then the optimal Lagrange multiplier
associated with the equality con§traint of the dual is zero provided that
the Hessian of the Lagrangian is nonsingular at the optimum. Hence for
the exterior penalty problem associated with Wolfe dual we can show
(Theorems 1 to 4) that under rather natural conditions the penalty
parameter remains finite. Hence we can obtain a globally differentiable
penalty function with a finite penalty parameter. Because our penalty
problem formulation depends in an essential manner on the dual problem,
our results are local results in the absence of convexity, and become
global results if convexity is assumed. Because our penalty function is
smooth and its parameter is finite it has important computational
implications. For example, fast methods of smooth optimization could be

used to directly optimize the differentiable penalty function (Algorithm 1),

or the function may be used as in [12] in enlarging the convergence region
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of fast but locally convergent algorithms f@,l]]. In addition, for
positive definite quadratic programming problems, our penalty function
can be used to derive a successive overrelaxation (SOR) algorithm
without the need to invert the underlying positive definite matrix of
the problem (Algorithm 2). SOR algorithms have proved to be successful
in solving Tinear programming problems [17] and have the potential for
solving enormous problems that cannot be tackled by pivotal methods
while at the same time preserving the sparsity of the problem.

Besides this Introduction, this paper contains two sections. In
Section 2 we treat the general nonlinear programming problem while in
Section 2 we speéialize to the quadratic programming case to obtain
sharper results. Section 1 contains theorems relating stationary points,
local and global optima of the nonlinear inequality constrained problem
to those of the penalty problem. We also give a simple gradient projec-
tion algorithm for optimizing the penalty function. In Section 3 we
have similar results for the quadratic programming case. We also present
an SOR method for quadratic programming which is a generalization of the
SOR method used with successful computational results on linear
programming [17].

We briefly describe our notation. A1l vectors in R" will be
column vectors unless transposed to a row vector by the superscript T.
R2 will denote the nonnegative orthant {x|xeR", x>0}. For x in R",
X{s i=1,...,n, will denote its ith component, while x, will denote a
vector in R" with components (x,); = max {x;,0}, i=1,...,n and |ix]|

will denote the Euclidean norm (xTx)s. For an mxn real matrix A, Ai

t Fa AREIaew W are




R

will denote the ith row, Aej the jth column, and if Ic{(1,...,m},
Je{l,...,n} then AI will denote the submatrix with rows Ai' fel, AJ

will denote the submatrix with columns A-j, jed, and Ay will denote
the submatrix with elements Aij’ iel and jeJ. For a differentiable
function f:R"+R, VF(x) will denote the nxl gradient vector, while
for a differentiable function g:R"+R"™, vg(x) will denote the mxn
Jacobian matrix. For a twice differentiable function L:R"xR"-R,
vxL(x.u) will denote the nx1 gradient with respect to x, vuL(x.u)
will denote mx1 gradient with respect to u, VZL(x.u) will denote
(n+m) x (n+m) Hessian with respect to both x and u whose submatrix

components are denoted as follows

Vb (xs) Vb (xsu)
VZL(x.u) =
VuxL(x.u) VuuL(x.u)

- For a noniinear programming problem such as (1) below, a point

L% (X,3)  R™ satisfying the Karush-Kuhn-Tucker conditions (1) is said
B -

4] to be a KKT point, while x is said to be a stationary point of (1).
x'j Whenever a point (X,u) is a KKT point, the differentiability of f

and g at x 1is implicitly assumed.

. ~> ‘ .
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2. The General Nonlinear Programming Problem

We consider here the problem

minimize f(x) subject to g(x) < 0 (1)
xeRMN

where f 1is a function from the n-dimensional real Euclidean space R"
into the reals and g is from R" into Rm._ Associated with this
problem is the Wolfe dual [22,15]

maximize L(x,u)  subject to V L(x,u) =0, u20

(x,u)eR"+m

(2)
where L(x,u):= f(x) + uTg(x)

Our penalty function is derived from (2) by constructing an exterior
penalty function for the equality constrain*s only. Thus we define the

penalty function
8lx,u,v)i= Lix,u) = 19, L(x,u)][2 (3)
and consider the penalty problem

maximize ©6(x,u,y) (4)
(x,u)eRNHT
u>0

which is differentiable on R when f and g are differentiable on

R". We shall relate various stationary and solution points of problems

(1), (2) and (4). We begin with a simple but useful result.
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Theorem 1 (Equivalence of stationary points of (1), (2) and (4))

Let f and g be twice continuously differentiable at X. Then

(a) x,u) is a stationar . X,u) is a stationar
(x,u) s a KK
point of (2) and - =({ point of (4) for
-1 point of (1)
vxxL(x,u) exists . any vy
(b) x,u) fs a statfonary
(x,u) is a stationary (x,u) is a KKT ./ point of (4), y# 0
4=
point of (2) point of (1) and %-15 not an

igenvalue of vxxL(x,u)

Proof
The proof follows directly by writing the Karush-Kuhn-Tucker conditions
[15] (V"), (2') and (4') for problems (1), (2) and (4) respectively as follows

v,L(%,0) = 0, g(X) £ 0, i'g(x) = 0, G20 (1)

For some VveR":

vxL(i.a) - vxxL(i,G)V 0
g(x) - vg(x)v < 0
4’ (g(x) - vg(X)¥) = 0

u>0

(2')

vxL(i,ﬁ) = 0
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"4
S (I - ¥7, L(%,0))V,L{X,0) = 0

- g(x) - ng(i)vxL(i,a) <0 @)

i (g(%) - YRg(R)TL(%,d)) = 0
u20 0

‘, In the next result we establish, under appropriate assumptions, the

? local concavity of 6(x,u,y) in both the variables x and u.

‘ Theorem 2 (Negative semidefiniteness and definiteness of vze(i,ﬁ,y))

Let (X,u) be a KKT point of (1), let f and g be twice contin-
uously differentiable at X and let VxxL(i,ﬁ) be positive definite
with minimum eigenvalue p > 0. Then for vy 3%—. (x,u) 1is a stationary

LI : point of (4) and the Hessian Vze(i,ﬁ,y) with respect to (x,u) fis negative
& semidefinite. If in addition vy >%- and Vvg(x) has linearly independent
] rows, then Vze(i,ﬁ,y) is negative definite and hence (X,u) is a strict
‘jv local maximum of (4).
ok
¥ Proof
By Theorem 1, (x,u) satisfies the KKT conditions (4') for
. problem (4). We have from (3) when f and g are differentiable at x
i that
. (1= Y0, L0 T, L xou)]
- ve(x,u,Y) = (5)
) g(x) - yvg(x)v,L(x,u)
) . Recalling that VXL(:'(,G) = 0 we have that
- 4
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T (ReN(T =Y L(R,E))  (1-47, L(%,d))9g(X)T
v20(%.d,v) = ~ (6)

vg(X)(I - ¥, L(%,d)) ~yvg(X)vg(x)T

Define

C:= VxxL(i,ﬁ) and A:= vg(x) (7)

then

C(I-vc) (1-yCAT| [c AT c [c AU
v2e(%,1,v) = - |

A(I-C) Tl 1A o A

and for vy 3~%- we have that

(xT uT)72(R,0,v) (%) = xTex + 2xTAu - yfjCcxeATul)?
= -xICx + 2xT(Cx+ATu) - Ylle+ATu||2
< -Blixli% + 2/lx]] flcxsaTul|-v]jcxeaTul]?
= -B(llxll- 5 llcxaTu)? - tr-FflexeaTull?
<0

Hence vze(i,i,y) is positive semidefinite for vy > If (:) # 0 then

Ol —

we consider two cases:

Case I: Cx + ATu # 0. For this case it follows from vy > 1 that
(" u)7P8(%,3,7) (%) < 0.
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Case II: Cx + ATu = 0 and (3) # 0. For this case we have that x # 0,
% - else uTA = 0, u# 0, which contradicts the assumption that the rows of

A are linearly independent. Hence

(xT uT)Vze(i,ﬁ,Y)(ﬁ) = -x1Cx < 0

where the last inequality follows from the assumption that C is

= positive definite.

—

Thus in either case (xT uT)vze(i,G, (ﬁ) <0 for (x,u) #.0 and

and (x,u) is a strict local

oI —

: vze(i,ﬁ,y) is negative definite for y >
maximum of (4) [6,13]. 0

The assumption in Theorem 2 that ©g(x) has full row rank is

restrictive, but apparently it is the best we can do if we require that

vze(i,ﬁ,y) be negative definite. A natural relaxation is to merely ask
for conditions that ensure that (x,u) is a strict local maximum of (4).
It turns out that such a relaxation can be reflected in replacing the

1inear independence of the rows of Vg(X) by the less stringent require-

,- .

T
LR
o

AT 8

ment of the linear independence of the gradients of the active constraints

s only as follows. ﬂ

Y

Theorem 3 (Strict local maximum of 8(x,uU,v))

The last sentence of Theorem 2 can be replaced by the following: If

b in addition y > %— and Vgi(i) are linearly independent for {ieJ where

-
[y

3= (1]g4(%)=0, 1=1,...,m} (8)

& then (X,u) 1is a strict local maximum of (4).

t 2 WAL ST WL L I N A e T S L e T R A

M
TR PR e, AT o



Proof

Let AJ = Vga(i) -From the proof of Theorem 2, by replacing A by

Aj» we have that VJJe(x u,y) 1is negative definite for y > 1- where

c(1-vc) (1-vo)} ¢ gl [? I]
v3,8(%,0,v):= I (9)
AJ(I-YC) 'YAJAJ AJ 0 AJ

We establish now that (X,u) is a strict local maximum by (4) by
establishing the second order sufficient optimality é@n&ftion [6,13].
Note from (5) that Vue(i,ﬁ,y) = g(x), and since the optimal multiplier
associated with the nonnegativity constraint u 20 is -Vue(i.ﬁ,y),

hence the second order sufficient optimality condition for (4) is then

X X
u-=0 X
T T
0F Q)= | yepo|™ X ug ug wpTe(REm) | £ <0 (10)
Uy Uy
where

E = {1]i;=0, g,(X)<0)
6 = {1]d;%0, g,(X)=0}
H = {1]i>0, g(X)=0}

Since J = GuH 1t follows that the second order condition (10) can be

rewritten as

X
0¢ |ug20| = (x! u})vgde(i,a.y) (l’:J) <0 (1)
u
H
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Condition (11) is automatically satisfied for y > 3 because we have
. , already established that nge(i.i,y) is negative definite for
' 1
Y > 5. 0
So far no convexity assumptions have been made anywhere and con-
sequently all our results are local results. We can globalize some of
; our results if we assume that f is uniformly strictly convex and g
E 1
' is convex on R". In fact we can show then that for each local solution
: (x(y), u(y)) of (84), x(y) is the unique global solution of (1). In
o particular we have the following.
Theorem 4 (Stationary points of (4) as global solutions of (1) and (2))
Let f and g be convex and twice continuously differentiable on
K R", let
! T,2 2 n
. y Vf(x)y 2 v|lyl|® for all x,yeR" and some v >0, (12)
‘; and let vy > %u For every stationary point (x(y), u(y)) of (4), x(y)
- - - .
% is independent of y and x(Y) = x, where x 1{is the unique solution
of (1).
g
i Proof
For x, y in R" and ueRm, u > 0 we have that
" ' T 2 2
¥V, Lixsuly 2 yvf(x)y 2 vllyll (13)

- -
-

Hence Vv, L(x,u) fis positive definite for all u 20 and its smallest
eigenvalue p(x,u) satisfies the inequality p(x,u) > v. By Theorem 1(b)

every stationary point (x(y), u(y)) satisfies the KKT conditions (1') of

o
.

{
vE
‘ F;
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! f (1). Since f 1is strictly convex and g is convex, x(y) must equal
~ the unique solution X of (1) and (x,u(y)) must soive (2) [15]. 0

We note that problem (4) can be used directly to construct an

algorithm for solving the origina) problem. For example we can easily
; prescribe a Levitin-Poljak gradient projection algorithm [14] or a
superlinearly convergent quasi-Newton algorithm [10,7,9,11,21]. The key
? observation to make here is that the projectioh operation here is an
; extremely simple one, namely projection on R"xR™, we give below the

simplest gradient projection algorithm for solving (4) and its convergence
to a KKT point of (1).
Algorithm 1 (Gradient projection algorithm for (4))

Choose y > 0 and any (xo,uo)eR"xRT. Having (xi,ui) compute

(xi*].ui*l) as follows:

' Direction choice: pi = (I-yvxxL(xi,ui))VxL(xi.ui)
q = (u'ffg(xf)-\rvs:(xi)V,(L(x1 wh)), - df
Stepsize choice: (xi+],ui+1) 2 (xi+xipi,ui+kiqi)
where Al is chosen such that
e(xi+kipi,ui+xiq1.y)-=m§x{6(x1+xpi.ui+kqi,y)[ui+kqizp}
where 6 1s defined by (3).

By standard convergence results [14] and by Theorem 1 we have,

Theorem 5 (Convergence of Algorithm 1)
let f and g be thrice differentiable on R". Each accumulation point

(x,u) of the sequence {(xi,ui)} generated by the gradient projection Algo-

rithm 1, such that %'is not an efgenvalue of v&xt(i.ﬁ).‘is a KKT point of (1).
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3. The Quadratic Programming Problem

In this section we specialize our results to the quadratic programming
problem and obtain some sharper results. However the principal purpose of
this section is to describe an SOR method for solving the quadratic program-
ming problem which does not require the inversion of the matrix defining the
quadratic term [17]. This should substantially widen the applicability of
SOR methods to mathematical programming problems which have hitherto been
limited principally to the minimization of quadratic functions on the nonnega-
tive orthant [16,17,18]. The principal advantages of SOR methods are their
ability to handle extremely large problems and to preserve sparsity.

We shall consider here the quadratic program

minimize 17xTcx + dlx subject to Ax< b (14)

xeRN
where C is an nxn symmetric matrix, A is an mxn matrix, d is in
R" and b dis in R™. The dual to this problem obtained from (2) is

(max;mlizggm %—xTCx+de+uT(Ax-b) subject to Cx+d+ATu=0, u>0 (15)
XslUJe

We note in passing that the standard quadratic programming dual [5,15]
obtained by substituting from the equality constraint into the objective
function of (15)

maximize -%—xTCx-bTu subject to Cx+d+Alu=0, u>0 (16)
(x,u)eRNM

cannot be used to obtain a differentiable exact penalty function because
the optimal multiplier associated with the equality constraint in (15)
is zero when C 1is nonsingular, whereas it is equal to x in (16) also

when C 1is nonsingular [15].
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The penalty function associated with (15) is

T

¢(x,u,y):= %XTCx +d' x+ uT(Ax-b) -% I Cx+ATu+d||2

and the associated penalty problem is

maximize ¢(x,u,Y)
(x,u)eRnEm
u>0

We have as an immediate consequence of Theorems 2 and 3 the following.

Theorem 6 (Concavity and strict concavity of ¢(x,u,y))

Let C be positive definite with minimum eigenvalue p > 0. Then
for vy 3-%. ‘Vz¢(x,u,y) is negative semidefinite and hence ¢(x,u,y)
is a concave function of (x,u) on R"+m. If in addition y > %- and
A has linearly independent rows, ‘then V2¢(x,u,y) is negative definite
and hence ¢(x,u,y) is a strictly concave function on R"+m. If

Y > %- and only Ai’ ied are linearly independent where

J = {i|AX=by, i=1,...,m}

and (x,u) is a KKT point of (1), then (x,u) 1is a strict global

maximum solution of (18).

Corollary 1 Llet {x|Ax<b} be nonempty, let C be positive definite
with least eigenvalue p > 0. Then for each y 3‘%-, problem (18) is

a concave quadratic maximization problem which possesses a solution
(x(y)s u(y)) with x{y) independent of y and x(y) = X where X is
the unique global solution of (14).

N -
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4
: With the help of the SOR scheme of [16] we can solve iteratively the
s . quadratic program (18) in R"><RT and thereby obtain a solution to (14).
It will be convenient for that purpose to have the following expressions
at hand
i (1-YC) (Cx+ATutd)
4 Vé(x,u,Y) = (19)
: | Ax = b - YA(Cx+ATutd
i C(I-yC)  (I-yC)AT
J V2¢(X,U’Y) = T (20)
o ' | A(I-vC) -YAA
An SOR method for solving the quadratic program (18) with relaxation
K factor we(0,2) can be given as follows then
. i+ i ) i1 i i i
. X =x.+ V ¢(X ,....,X s X39eesasX U ,Y)
S R T ST
_i j*]..--..ﬂ
% (21)
s JH = e w i+ i+ i+l 1
= (u v Q(x Uy seeoesls 1sUiseccestl .Y))
; R ITIEE 1 UL
2 J=1,.....,m
¢
¥ We spell out our SOR scheme in detail now.

Algorithm 2 (SOR scheme for (18))

Choose we(0,2), v > max ” I j#O R %—# an eigenvalue of C
J

and (xo.uo)e R“:tRT. Having (xi,ui) compute (x1+‘,u1+1) -as follows:
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i+1 'I 4
j cjj‘Y“cj“

&tto11?fj=6 Tm~3>15ﬂy

n
x 2((13-YC ) 2 C. X 1”+sz C. x14ATu'+d))

j'].....,n

: 141 _ (u

f Yj "

""—'I'z(A X 1

“vllA4
» or J>1 only

" ‘ J=l,....,m
: Remark 1

m
"bj‘YA (Cxiﬂ"' 2 (A ) i+]+z§j (AT)O zu;""d))).}

The only implicit assumption in Algorithm 2 is that AJ #0,
j=1,....,m. This assumption imposes no restrictions whatsoever, since
all constraints ij,§ bj of (14) for which Aj = 0 are either

inconsistent (bj'<0) or else can be discarded.

Remark 2

Note that in Algorithm 2 only linear arrays are needed in distinc-

tion from rectangular arrays. That is, we need to access the rows and

A% o L

columns of C and A one at a time. Thus, if the problem is of
enormous size and very sparse, then only the nonzero elements need be

:ﬁ, stored, and this sparsity unlike pivotal algorithms is never lost.

3 We can now use the convergence theorems of [16] and the theorems

of this paper to obtain the following convergence result for the SOR
Algorithm 2.

X

Theorem 7 (Monotonicity and convergence of the SOR Algorithm 2)
For the sequence {(xi.ui)}, i=1,2,..., generated by Algorithm 2

¢(x 1+]ou 17) 2 ‘b(x sU 97)! 1=0,1,.... | (22) ]

\
:; N * wegoid
¥
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and each accumulation point (X,u) of the sequence ((x‘,ui)} is a KKT
‘f , point of the original quadratic program (14). If in addition C is

positive semidefinite then x is a global solution of (14).

Proof
; Inequality (22) follows from (9) of [16] and by Theorem 2.1 of [16]

; (x,u) is a stationary point of (17). By Theorem 1, (x,u) is a KKT
point of (14). When C is positive semidefinite x is a global minimum

solution of (14) by the sufficiency of the KKT conditions [15]. ]

We note that Theorem 7 does not ensure the existence of an
accumulation (x,u) of the sequence {(xi,ui)} of Algorithm 2. To

ensure that at least one accumulation point exists we need to impose

some sort of qualification similar to that of Theorem 2.2 of [16] which
will ensure the boundedness of the iterates {(xi,u1)} of Algorithm 2.

;o In particular we have the following.

Theorem 8 (Boundedness of the iterates of the SOR Algorithm 2)
Let C be positive definite with minimum eigenvalue p > G, let

A have linearly independent columns, let X satisfy the constraint

qualification AX < b and let y > %u Then the sequence

{(xi,ui)}. i=1,2,...., generated by the SOR Algorithm 2 is bounded

and 1im x! = X, where X 1is the unique global solution of (14).

{0

Proof
By Theorem 6 the constant Hessian V2¢(x,u,y) defined by (20) is

negative semidefinite. We shall assume that the.sequence {(xi,ui)}
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generated by Algorithm 2 is unbounded and exhibit a contradiction. With-
out loss of generality suppose that Il(xi.ui)ll #0 and {lei,ui |} e,

q (I-yC)d
Define 2z:= (:), M:= V2¢(x.u.y) and q:= 1 :a . Then
qp|  |-b-vAd

o(x,u,v) = ¢(z,v) = -}zTMz +q'z

It follows from (22) and Algorithm 2 for 1=1,2,...., - that u1

Q{zo,%{<ggziz%l=%z1irizi+ ] q‘l’ 2! .
2" = | W2 0% w2 ey
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>0 and

i
By the Bolzano-Weierstrass Theorem we get that {-"—z;rr has an
z

Rnﬂn

accumulation point y on the unit sphere in satisfying 0 3 %-S'TM&

and y = (’5) with xeR" and ﬁeRT. Since M is negative semidefinite

T

it follows that y My = 0 and hence My = 0. Since we also have that

o
Nz i Nzl Wz iz izl

z

T

it follows that 0 < q'y. We thus have

M&-O.qTigO.O#i-(é).-ﬁz_o (23)

or equivalently
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CI-yC) (I-yCAT| _
X
7| '

A(1-yC) -YAA

(3) =0, q1% + qi 2 0, @ 2 0, (X,d) # 0 (24)

From the generalized Gordan theorem of the alternative [19] (24) is

equivalent to either

the rows of [C(I-yC) (I-yC)AT] are linearly dependent (25)
or

C(I-yC)v + (I-yC)Alw = (I-yC)d

A(I-yC)v - YAATW > - b - yAd (26)

has no solution (v,w) in rnH

Because vy >~% it follows that I - yC is negative definite and that
C(I-yC) 1is nonsingular which contradicts (25). We will show now that
(26) also leads to a contradiction. By hypothesis we have that AX < b.

Since the columns of A are linearly independent, there exists a w

satisfying
Alw = d + C&
and hence
A% = AC 1 (ATw-d) < b
that is
acld - ac AT+ b >0
or

AC-]((I-yC)d - (I-YC)ATN) - yAATw > -b - yAd
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By defining :
“1.-1 T
v = (I-y¢) e T ((1-y€)d - (I-yC)ATw)
we get
C(I=C)v+ (I-yC)ATw= (I-yC)d

A(1-yC)v - yAATW > = b - yAd

These last two relations contradict (26). Consequently the sequence
{(xi,ui)} is bounded and must have at least one accumulation point. For
each accumulation point (X,U), X must equal the unique solution x of

(14). Since {xi} is also bounded it must converge to x [2]. o

At this time we do not have any computational experience for the SOR
Algorithm 2 for solving the general quadratic programming problem (14).
However, for the case when matrix C = €] where ¢ 1is a positive number

and y = %u the penalty problem (18) becomes

Maximize - %—“ATU*-dllz -eblu (27)
ueRM
u>0

This is precisely the dual of the quadratic program perturbation of [17]

associated with the linear program

Minimize d'x  subject to Ax < b (28)
xeRD
and which was solved quite successfully by the SOR method proposed here.
Thus for at least this special class of quadratic programs computational
experience is very encouraging, It is hoped that this experience will

carry over to the more general case.
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